Chapter 5 Linear Inequalities Miscellaneous Exercise

Miscellaneous Exercise on Chapter 5

Solve the inequalities in Exercises $1$ to $6.$

1. $2 \leq 3 x-4 \leq 5$

{{ < details “Show Answer” > }}

Answer :

$2 \leq 3 x-4 \leq 5$

$\Rightarrow 2+4 \leq 3 x-4+4 \leq 5+4$

$\Rightarrow 6 \leq 3 x \leq 9$

$\Rightarrow 2 \leq x \leq 3$

Thus, all the real numbers, $x$, which are greater than or equal to $2$ but less than or equal to $3 ,$ are the solutions of the given inequality. The solution set for the given inequalityis $[2,3]$.

{{ < /details > }}

2. $6 \leq-3(2 x-4) < 12$

{{ < details “Show Answer” > }}

Answer :

$6 \leq -3(2 x-4) < 12$

$\Rightarrow 2 \leq -(2 x-4) < 4$

$\Rightarrow-2 \geq 2 x-4 > -4$

$\Rightarrow 4 - 2 \geq 2 x > 4 - 4$

$\Rightarrow 2 \geq 2 x > 0$

$\Rightarrow 1 \geq x > 0$

Thus, the solution set for the given inequalityis $(0,1]$.

{{ < /details > }}

3. $-3 \leq 4-\dfrac{7 x}{2} \leq 18$

{{ < details “Show Answer” > }}

Answer :

$-3 \leq 4-\dfrac{7 x}{2} \leq 18$

$\Rightarrow-3-4 \leq-\dfrac{7 x}{2} \leq 18-4$

$\Rightarrow-7 \leq-\dfrac{7 x}{2} \leq 14$

$\Rightarrow 7 \geq \dfrac{7 x}{2} \geq-14$

$\Rightarrow 1 \geq \dfrac{x}{2} \geq-2$

$\Rightarrow 2 \geq x \geq-4$

Thus, the solution set for the given inequalityis $[-4, 2].$

{{ < /details > }}

4. $-15 < \dfrac{3(x-2)}{5} \leq 0$

{{ < details “Show Answer” > }}

Answer :

$-15 < \dfrac{3(x-2)}{5} \leq 0$

$\Rightarrow - 75 < 3(x - 2) \leq 0$

$\Rightarrow - 25 < x - ~ 2 \leq 0$

$\Rightarrow - 25+2 < x \leq 2$

$\Rightarrow -23 < x \leq 2$

Thus, the solution set for the given inequalityis $(-23, 2]$

{{ < /details > }}

5. $-12 < 4-\dfrac{3 x}{-5} \leq 2$

{{ < details “Show Answer” > }}

Answer :

$-12 < 4-\dfrac{3 x}{-5} \leq 2$

$\Rightarrow-12-4 < \dfrac{-3 x}{-5} \leq 2-4$

$\Rightarrow-16 < \dfrac{3 x}{5} \leq-2$

$\Rightarrow-80 < 3 x \leq-10$

$\Rightarrow \dfrac{-80}{3} < x \leq \dfrac{-10}{3}$

Thus, the solution set for the given inequalityis $\bigg(\dfrac{-80}{3}, \dfrac{-10}{3}\bigg]$.

{{ < /details > }}

6. $7 \leq \dfrac{(3 x+11)}{2} \leq 11$.

{{ < details “Show Answer” > }}

Answer :

$7 \leq \dfrac{(3 x+11)}{2} \leq 11$

$\Rightarrow 14 \leq 3 x+11 \leq 22$

$\Rightarrow 14-11 \leq 3 x \leq 22-11$

$\Rightarrow 3 \leq 3 x \leq 11$

$\Rightarrow 1 \leq x \leq \dfrac{11}{3}$

Thus, the solution set for the given inequalityis $\bigg[1, \dfrac{11}{3}\bigg]$.

{{ < /details > }}

Solve the inequalities in Exercises 7 to 10 and represent the solution graphically on number line.

7. $5 x+1 > -24,5 x-1 < 24$

{{ < details “Show Answer” > }}

Answer :

$5 x+1 > -24$

$\Rightarrow 5 x > -25$

$\Rightarrow x > -5$

$5 x-1 < 24\qquad …(1) $

$\Rightarrow 5 x < 25$

$\Rightarrow x < 5\qquad …(2) $

From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $(-5,5)$. The solution of the given system of inequalities can be represented on number line as

{{ < /details > }}

8. $2(x-1) < x+5,3(x+2) > 2-x$

{{ < details “Show Answer” > }}

Answer :

$2(x-1) < x+5$

$\Rightarrow 2 x-2 < x+5$

$\Rightarrow 2 x-x < 5+2$

$\Rightarrow x < 7 \qquad \ldots$ $(1)$

$3(x+2) > 2-x$

$\Rightarrow 3 x+6 > 2-x$

$\Rightarrow 3 x+x > 2-6$

$\Rightarrow 4 x > -4$

$\Rightarrow x > -1 \qquad\ldots$ $(2)$

From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $(-1, 7).$ The solution of the given system of inequalities can be represented on number line as

{{ < /details > }}

9. $3 x-7 > 2(x-6), 6-x > 11-2 x$

{{ < details “Show Answer” > }}

Answer :

$3 x - 7 > 2 (x $ - 6 $ ) $

$\Rightarrow 3 x - 7 > 2 x - 12$

$\Rightarrow 3 x - 2 x > - 12+7$

$\Rightarrow x > - 5\qquad … $ $(1)$

$\Rightarrow 6 - x > 11 - 2 x$

$\Rightarrow - x+2 x > 11- 6$

$\Rightarrow x > 5 \qquad …$ $(2)$

From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $(5, \infty)$. The solution of the given system of inequalities can be represented on number line as

{{ < /details > }}

< br >

10. $5(2 x-7)-3(2 x+3) \leq 0,2 x+19 \leq 6 x+47$.

{{ < details “Show Answer” > }}

Answer :

$5(2 x-7)-3(2 x+3) \leq 0$

$\Rightarrow 10 x-35-6 x-9 \leq 0$

$\Rightarrow 4 x-44 \leq 0$

$\Rightarrow 4 x \leq 44$

$\Rightarrow x \leq 11 \qquad\ldots$ $(1)$

$\Rightarrow 2 x+19 \leq 6 x+47$

$\Rightarrow 19-47$ $\leq x-2 x$

$\Rightarrow-28 \leq x $

$\Rightarrow-7 \leq x\qquad …$ $(2)$

From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $[-7, 11].$ The solution of the given system of inequalities can be represented on number line as

{{ < /details > }}

11. A solution is to be kept between $68^{\circ} F$ and $77^{\circ} F$. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by $ F=\dfrac{9}{5} C+32 ? $

{{ < details “Show Answer” > }}

Answer :

Since the solution is to be kept between $68^{\circ} F$ and $77^{\circ} F$,

$68 < F < 77$

Putting $F=\dfrac{9}{5} C+32$, we obtain

$68 < \dfrac{9}{5} C+32 < 77$

$\Rightarrow 68-32 < \dfrac{9}{5} C < 77-32$

$\Rightarrow 36 < \dfrac{9}{5} C < 45$

$\Rightarrow 36 \times \dfrac{5}{9} < C < 45 \times \dfrac{5}{9}$

$\Rightarrow 20 < C < 25$

Thus, the required range of temperature in degree Celsius is between $20^{\circ} C$ and $25^{\circ} C$.

{{ < /details > }}

12. A solution of $8 %$ boric acid is to be diluted by adding a $2 %$ boric acid solution to it. The resulting mixture is to be more than $4 %$ but less than $6 %$ boric acid. If we have 640 litres of the $8 %$ solution, how many litres of the $2 %$ solution will have to be added?

{{ < details “Show Answer” > }}

Answer :

Let $x$ litres of $2 %$ boric acid solution is required to be added.

Then,total mixture $=(x+640)$ litres

This resulting mixture is to be more than $4 %$ but less than $6 %$ boric acid.

$\therefore \ \ 2 % x+8 %$ of $640 > 4 %$ of $(x+640)$

And, $2 % x+8 %$ of $640 < 6 %$ of $(x+640)$

$2 % x+8 %$ of $640 > 4 %$ of $(x+640)$

$\Rightarrow \dfrac{2}{100} x+\dfrac{8}{100}(640) > \dfrac{4}{100}(x+640)$

$\Rightarrow 2 x+5120 > 4 x+2560$

$\Rightarrow 5120 - 2560 > 4 x - 2 x$

$\Rightarrow 5120 - 2560 > 2 x$

$\Rightarrow 2560 > 2 x$

$\Rightarrow 1280 > x$

$2 % \ x+8 %$ of $640 < 6 %$ of $(x+640)$

$\dfrac{2}{100} x+\dfrac{8}{100}(640) < \dfrac{6}{100}(x+640)$

$\Rightarrow 2 x+5120 < 6 x+3840$

$\Rightarrow 5120 - 3840 < 6 x - 2 x$

$\Rightarrow 1280 < 4 x$

$\Rightarrow 320 < x$

$\therefore \ \ 320 < x < 1280$

Thus, the number of litres of $2 %$ of boric acid solution that is to be added will have to be more than 320 litres but less than 1280 litres.

{{ < /details > }}

13. How many litres of water will have to be added to 1125 litres of the $45 %$ solution of acid so that the resulting mixture will contain more than $25 %$ but less than $30 %$ acid content?

{{ < details “Show Answer” > }}

Answer :

Let $x$ litres of water is required to be added.

Then,total mixture $=(x+1125)$ litres

It is evident that the amount of acid contained in the resulting mixture is $45 %$ of 1125 litres.

This resulting mixture will contain more than $25 %$ but less than $30 %$ acid content.

$\therefore \ \ 30 %$ of $(1125+x) > 45 %$ of 1125

And, $25 %$ of $(1125+x) < 45 %$ of 1125

$30 %$ of $(1125+x) > 45 %$ of 1125

$\Rightarrow \dfrac{30}{100}(1125+x) > \dfrac{45}{100} \times 1125$

$\Rightarrow 30(1125+x) > 45 \times 1125$

$\Rightarrow 30 \times 1125+30 x > 45 \times 1125$

$\Rightarrow 30 x > 45 \times 1125-30 \times 1125$

$\Rightarrow 30 x > (45-30) \times 1125$

$\Rightarrow x > \dfrac{15 \times 1125}{30}=562.5$

$25 %$ of $(1125+x) < 45 %$ of $1125$

$\Rightarrow \dfrac{25}{100}(1125+x) < \dfrac{45}{100} \times 1125$

$\Rightarrow 25(1125+x) > 45 \times 1125$

$\Rightarrow 25 \times 1125+25 x > 45 \times 1125$

$\Rightarrow 25 x > 45 \times 1125-25 \times 1125$

$\Rightarrow 25 x > (45-25) \times 1125$

$\Rightarrow x > \dfrac{20 \times 1125}{25}=900$

$\therefore \ \ 562.5 < x < 900$

Thus, the required number of litres of water that is to be added will have to be more than $562.5$ but less than $900$ .

{{ < /details > }}

14. IQ of a person is given by the formula

$ IQ=\dfrac{MA}{CA} \times 100 $

where MA is mental age and CA is chronological age. If $80 \leq IQ \leq 140$ for a group of $12 $ years old children, find the range of their mental age.

{{ < details “Show Answer” > }}

Answer :

It is given that for a group of $12$ years old children, $80 \leq IQ \leq 140 \ldots (i)$

For a group of $12$ years old children, $CA=12$ years

$ IQ=\dfrac{MA}{12} \times 100 $

Putting this value of IQ in $(i),$ we obtain

$ \begin{aligned} & 80 \leq \dfrac{MA}{12} \times 100 \leq 140 \\ \\ & \Rightarrow 80 \times \dfrac{12}{100} \leq MA \leq 140 \times \dfrac{12}{100} \\ \\ & \Rightarrow 9.6 \leq MA \leq 16.8 \end{aligned} $

Thus, the range of mental age of the group of $12$ years old children is $9.6 \leq MA \leq 16.8$.

{{ < /details > }}



ਵਿਸ਼ਾ - ਸੂਚੀ