Chapter 5 Linear Inequalities Miscellaneous Exercise
Miscellaneous Exercise on Chapter 5
Solve the inequalities in Exercises $1$ to $6.$
1. $2 \leq 3 x-4 \leq 5$
{{ < details “Show Answer” > }}
Answer :
$2 \leq 3 x-4 \leq 5$
$\Rightarrow 2+4 \leq 3 x-4+4 \leq 5+4$
$\Rightarrow 6 \leq 3 x \leq 9$
$\Rightarrow 2 \leq x \leq 3$
Thus, all the real numbers, $x$, which are greater than or equal to $2$ but less than or equal to $3 ,$ are the solutions of the given inequality. The solution set for the given inequalityis $[2,3]$.
{{ < /details > }}
2. $6 \leq-3(2 x-4) < 12$
{{ < details “Show Answer” > }}
Answer :
$6 \leq -3(2 x-4) < 12$
$\Rightarrow 2 \leq -(2 x-4) < 4$
$\Rightarrow-2 \geq 2 x-4 > -4$
$\Rightarrow 4 - 2 \geq 2 x > 4 - 4$
$\Rightarrow 2 \geq 2 x > 0$
$\Rightarrow 1 \geq x > 0$
Thus, the solution set for the given inequalityis $(0,1]$.
{{ < /details > }}
3. $-3 \leq 4-\dfrac{7 x}{2} \leq 18$
{{ < details “Show Answer” > }}
Answer :
$-3 \leq 4-\dfrac{7 x}{2} \leq 18$
$\Rightarrow-3-4 \leq-\dfrac{7 x}{2} \leq 18-4$
$\Rightarrow-7 \leq-\dfrac{7 x}{2} \leq 14$
$\Rightarrow 7 \geq \dfrac{7 x}{2} \geq-14$
$\Rightarrow 1 \geq \dfrac{x}{2} \geq-2$
$\Rightarrow 2 \geq x \geq-4$
Thus, the solution set for the given inequalityis $[-4, 2].$
{{ < /details > }}
4. $-15 < \dfrac{3(x-2)}{5} \leq 0$
{{ < details “Show Answer” > }}
Answer :
$-15 < \dfrac{3(x-2)}{5} \leq 0$
$\Rightarrow - 75 < 3(x - 2) \leq 0$
$\Rightarrow - 25 < x - ~ 2 \leq 0$
$\Rightarrow - 25+2 < x \leq 2$
$\Rightarrow -23 < x \leq 2$
Thus, the solution set for the given inequalityis $(-23, 2]$
{{ < /details > }}
5. $-12 < 4-\dfrac{3 x}{-5} \leq 2$
{{ < details “Show Answer” > }}
Answer :
$-12 < 4-\dfrac{3 x}{-5} \leq 2$
$\Rightarrow-12-4 < \dfrac{-3 x}{-5} \leq 2-4$
$\Rightarrow-16 < \dfrac{3 x}{5} \leq-2$
$\Rightarrow-80 < 3 x \leq-10$
$\Rightarrow \dfrac{-80}{3} < x \leq \dfrac{-10}{3}$
Thus, the solution set for the given inequalityis $\bigg(\dfrac{-80}{3}, \dfrac{-10}{3}\bigg]$.
{{ < /details > }}
6. $7 \leq \dfrac{(3 x+11)}{2} \leq 11$.
{{ < details “Show Answer” > }}
Answer :
$7 \leq \dfrac{(3 x+11)}{2} \leq 11$
$\Rightarrow 14 \leq 3 x+11 \leq 22$
$\Rightarrow 14-11 \leq 3 x \leq 22-11$
$\Rightarrow 3 \leq 3 x \leq 11$
$\Rightarrow 1 \leq x \leq \dfrac{11}{3}$
Thus, the solution set for the given inequalityis $\bigg[1, \dfrac{11}{3}\bigg]$.
{{ < /details > }}
Solve the inequalities in Exercises 7 to 10 and represent the solution graphically on number line.
7. $5 x+1 > -24,5 x-1 < 24$
{{ < details “Show Answer” > }}
Answer :
$5 x+1 > -24$
$\Rightarrow 5 x > -25$
$\Rightarrow x > -5$
$5 x-1 < 24\qquad …(1) $
$\Rightarrow 5 x < 25$
$\Rightarrow x < 5\qquad …(2) $
From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $(-5,5)$. The solution of the given system of inequalities can be represented on number line as
{{ < /details > }}
8. $2(x-1) < x+5,3(x+2) > 2-x$
{{ < details “Show Answer” > }}
Answer :
$2(x-1) < x+5$
$\Rightarrow 2 x-2 < x+5$
$\Rightarrow 2 x-x < 5+2$
$\Rightarrow x < 7 \qquad \ldots$ $(1)$
$3(x+2) > 2-x$
$\Rightarrow 3 x+6 > 2-x$
$\Rightarrow 3 x+x > 2-6$
$\Rightarrow 4 x > -4$
$\Rightarrow x > -1 \qquad\ldots$ $(2)$
From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $(-1, 7).$ The solution of the given system of inequalities can be represented on number line as
{{ < /details > }}
9. $3 x-7 > 2(x-6), 6-x > 11-2 x$
{{ < details “Show Answer” > }}
Answer :
$3 x - 7 > 2 (x $ - 6 $ ) $
$\Rightarrow 3 x - 7 > 2 x - 12$
$\Rightarrow 3 x - 2 x > - 12+7$
$\Rightarrow x > - 5\qquad … $ $(1)$
$\Rightarrow 6 - x > 11 - 2 x$
$\Rightarrow - x+2 x > 11- 6$
$\Rightarrow x > 5 \qquad …$ $(2)$
From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $(5, \infty)$. The solution of the given system of inequalities can be represented on number line as
{{ < /details > }}
< br >
10. $5(2 x-7)-3(2 x+3) \leq 0,2 x+19 \leq 6 x+47$.
{{ < details “Show Answer” > }}
Answer :
$5(2 x-7)-3(2 x+3) \leq 0$
$\Rightarrow 10 x-35-6 x-9 \leq 0$
$\Rightarrow 4 x-44 \leq 0$
$\Rightarrow 4 x \leq 44$
$\Rightarrow x \leq 11 \qquad\ldots$ $(1)$
$\Rightarrow 2 x+19 \leq 6 x+47$
$\Rightarrow 19-47$ $\leq x-2 x$
$\Rightarrow-28 \leq x $
$\Rightarrow-7 \leq x\qquad …$ $(2)$
From $(1)$ and $(2),$ it can be concluded that the solution set for the given system of inequalities is $[-7, 11].$ The solution of the given system of inequalities can be represented on number line as
{{ < /details > }}
11. A solution is to be kept between $68^{\circ} F$ and $77^{\circ} F$. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by $ F=\dfrac{9}{5} C+32 ? $
{{ < details “Show Answer” > }}
Answer :
Since the solution is to be kept between $68^{\circ} F$ and $77^{\circ} F$,
$68 < F < 77$
Putting $F=\dfrac{9}{5} C+32$, we obtain
$68 < \dfrac{9}{5} C+32 < 77$
$\Rightarrow 68-32 < \dfrac{9}{5} C < 77-32$
$\Rightarrow 36 < \dfrac{9}{5} C < 45$
$\Rightarrow 36 \times \dfrac{5}{9} < C < 45 \times \dfrac{5}{9}$
$\Rightarrow 20 < C < 25$
Thus, the required range of temperature in degree Celsius is between $20^{\circ} C$ and $25^{\circ} C$.
{{ < /details > }}
12. A solution of $8 %$ boric acid is to be diluted by adding a $2 %$ boric acid solution to it. The resulting mixture is to be more than $4 %$ but less than $6 %$ boric acid. If we have 640 litres of the $8 %$ solution, how many litres of the $2 %$ solution will have to be added?
{{ < details “Show Answer” > }}
Answer :
Let $x$ litres of $2 %$ boric acid solution is required to be added.
Then,total mixture $=(x+640)$ litres
This resulting mixture is to be more than $4 %$ but less than $6 %$ boric acid.
$\therefore \ \ 2 % x+8 %$ of $640 > 4 %$ of $(x+640)$
And, $2 % x+8 %$ of $640 < 6 %$ of $(x+640)$
$2 % x+8 %$ of $640 > 4 %$ of $(x+640)$
$\Rightarrow \dfrac{2}{100} x+\dfrac{8}{100}(640) > \dfrac{4}{100}(x+640)$
$\Rightarrow 2 x+5120 > 4 x+2560$
$\Rightarrow 5120 - 2560 > 4 x - 2 x$
$\Rightarrow 5120 - 2560 > 2 x$
$\Rightarrow 2560 > 2 x$
$\Rightarrow 1280 > x$
$2 % \ x+8 %$ of $640 < 6 %$ of $(x+640)$
$\dfrac{2}{100} x+\dfrac{8}{100}(640) < \dfrac{6}{100}(x+640)$
$\Rightarrow 2 x+5120 < 6 x+3840$
$\Rightarrow 5120 - 3840 < 6 x - 2 x$
$\Rightarrow 1280 < 4 x$
$\Rightarrow 320 < x$
$\therefore \ \ 320 < x < 1280$
Thus, the number of litres of $2 %$ of boric acid solution that is to be added will have to be more than 320 litres but less than 1280 litres.
{{ < /details > }}
13. How many litres of water will have to be added to 1125 litres of the $45 %$ solution of acid so that the resulting mixture will contain more than $25 %$ but less than $30 %$ acid content?
{{ < details “Show Answer” > }}
Answer :
Let $x$ litres of water is required to be added.
Then,total mixture $=(x+1125)$ litres
It is evident that the amount of acid contained in the resulting mixture is $45 %$ of 1125 litres.
This resulting mixture will contain more than $25 %$ but less than $30 %$ acid content.
$\therefore \ \ 30 %$ of $(1125+x) > 45 %$ of 1125
And, $25 %$ of $(1125+x) < 45 %$ of 1125
$30 %$ of $(1125+x) > 45 %$ of 1125
$\Rightarrow \dfrac{30}{100}(1125+x) > \dfrac{45}{100} \times 1125$
$\Rightarrow 30(1125+x) > 45 \times 1125$
$\Rightarrow 30 \times 1125+30 x > 45 \times 1125$
$\Rightarrow 30 x > 45 \times 1125-30 \times 1125$
$\Rightarrow 30 x > (45-30) \times 1125$
$\Rightarrow x > \dfrac{15 \times 1125}{30}=562.5$
$25 %$ of $(1125+x) < 45 %$ of $1125$
$\Rightarrow \dfrac{25}{100}(1125+x) < \dfrac{45}{100} \times 1125$
$\Rightarrow 25(1125+x) > 45 \times 1125$
$\Rightarrow 25 \times 1125+25 x > 45 \times 1125$
$\Rightarrow 25 x > 45 \times 1125-25 \times 1125$
$\Rightarrow 25 x > (45-25) \times 1125$
$\Rightarrow x > \dfrac{20 \times 1125}{25}=900$
$\therefore \ \ 562.5 < x < 900$
Thus, the required number of litres of water that is to be added will have to be more than $562.5$ but less than $900$ .
{{ < /details > }}
14. IQ of a person is given by the formula
$ IQ=\dfrac{MA}{CA} \times 100 $
where MA is mental age and CA is chronological age. If $80 \leq IQ \leq 140$ for a group of $12 $ years old children, find the range of their mental age.
{{ < details “Show Answer” > }}
Answer :
It is given that for a group of $12$ years old children, $80 \leq IQ \leq 140 \ldots (i)$
For a group of $12$ years old children, $CA=12$ years
$ IQ=\dfrac{MA}{12} \times 100 $
Putting this value of IQ in $(i),$ we obtain
$ \begin{aligned} & 80 \leq \dfrac{MA}{12} \times 100 \leq 140 \\ \\ & \Rightarrow 80 \times \dfrac{12}{100} \leq MA \leq 140 \times \dfrac{12}{100} \\ \\ & \Rightarrow 9.6 \leq MA \leq 16.8 \end{aligned} $
Thus, the range of mental age of the group of $12$ years old children is $9.6 \leq MA \leq 16.8$.
{{ < /details > }}