Chapter 1 Sets EXERCISE 1.5

EXERCISE 1.5

1. Let $U={1,2,3,4,5,6,7,8,9}, \ A={1,2,3,4}, \ B={2,4,6,8} \ $ and $ \ C={3,4,5,6}$. Find

(i): $A^{\prime}$

(ii): $B^{\prime}$

(iii): $(A \cup C)^{\prime}$

(iv): $(A \cup B)^{\prime}$

(v): $(A^{\prime})^{\prime}$

(vi): $(B-C)^{\prime}$

Show Answer

Answer :

$U={1,2,3,4,5,6,7,8,9}$

$A={1,2,3,4}$

$B={2,4,6,8}$

$C={3,4,5,6}$

(i): $A^{\prime}=U-(A\cup C)={5,6,7,8,9}$

(ii): $B^{\prime}=U-B={1,3,5,7,9}$

(iii): $A \cup C={1,2,3,4,5,6}$

$\therefore \ \ (A \cup C)^{\prime}=U-(A\cup C)={7,8,9}$

(iv): $A \cup B={1,2,3,4,6,8}$

$(A \cup B)^{\prime}=U-(A\cup B)={5,7,9}$

(v): $(A^{\prime})^{\prime}=A={1,2,3,4}$

(vi): $B-C={2,8}$

$\therefore \ \ (B-C)^{\prime}=U-(B-C)={1,3,4,5,6,7,9}$

2. If $U={a, b, c, d, e, f, g, h}$, find the complements of the following sets :

(i): $A={a, b, c}$

(ii): $B={d, e, f, g}$

(iii): $C={a, c, e, g}$

(iv): $D={f, g, h, a}$

Show Answer

Answer :

$U={a, b, c, d, e, f, g, h}$

(i): $A={a, b, c}$

$A^{\prime}=U-A={d, e, f, g, h} $

(ii): $B={d, e, f, g}$

$\therefore \ \ B^{\prime}=U-B={a, b, c, h}$

(iii): $C={a, c, e, g}$

$\therefore \ \ C^{\prime}=U-C={b, d, f, h}$

(iv): $D={f, g, h, a}$

$\therefore \ \ D^{\prime}=U-D={b, c, d, e}$

3. Taking the set of natural numbers as the universal set, write down the complements of the following sets:

(i): ${x: x$ is an even natural number $} \quad$

(ii): ${x: x$ is an odd natural number $}$

(iii): ${x: x$ is a positive multiple of $3 }$

(iv): ${x: x$ is a prime number $}$

(v): ${x: x$ is a natural number divisible by $3$ and $5$ $}$

(vi): ${x: x$ is a perfect square $} \quad$

(vii): ${x: x$ is a perfect cube $}$

(viii): ${x: x+5=8}$

(ix): ${x: 2 x+5=9}$

(x): ${x: x \geq 7}$

(xi): ${x: x \in N$ and $2 x+1>10}$

Show Answer

Answer :

$U=N$ : Set of natural numbers.

We know tha complement of a set A is given by $A’=U-A$

(i): ${x: x$ is an even natural number $}^{\prime}={x: x$ is an odd natural number $}$

(ii): ${x: x \text{ is an odd natural number }}^{\prime}={x: x$ is an even natural number $}$

(iii): ${x: x \text{ is a positive multiple of } 3}^{\prime}= {x: x \in N$ and $x$ is not a multiple of $3 } $

(iv): ${x: x \text{ is a prime number }}^{\prime}={x: x$ is a positive composite number and $x=1}$

(v): ${x: x \text{ is a natural number divisible by } 3 \text{ and } 5}^{\prime}={x: x$ is a natural number that is not divisible by $3$ or $5$ $ }$

(vi): ${x: x \text{ is a perfect square }}^{\prime}={x: x \in N$ and $x$ is not a perfect square $}$

(vii): ${x: x \text{ is a perfect cube }}^{\prime}={x: x \in N$ and $x$ is not a perfect cube $}$

(viii): ${x: x+5=8}^{\prime}={x: x \in N$ and $x \neq 3}$

(ix): ${x: 2 x+5=9}^{\prime}={x: x \in N$ and $x \neq 2}$

(x): ${x: x \ {\geq 7}^{\prime}={x: x \in N$ and $x<7}$

(xi): ${x: x \in N \text{ and } 2 x+1>10}^{\prime}={x: x \in N$ and $x \leq 9 / 2}$

4. If $U={1,2,3,4,5,6,7,8,9}, \ A={2,4,6,8} \ $ and $ \ B={2,3,5,7}$. Verify that

(i): $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii): $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

$U={1,2,3,4,5,6,7,8,9}$

$A={2,4,6,8}, B={2,3,5,7}$

(i): $ \ (A \cup B)^{\prime}={2,3,4,5,6,7,8}^{\prime}={1,9} $

$\qquad A^{\prime} \cap B^{\prime}={1,3,5,7,9} \cap(1,4,6,8,9)={1,9}$

$\therefore \ \ (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii): $ \ (A \cap B)^{\prime}={2}^{\prime}={1,3,4,5,6,7,8,9} $

$\qquad A^{\prime} \cup B^{\prime}={1,3,5,7,9} \cup{1,4,6,8,9}={1,3,4,5,6,7,8,9} $

$ \therefore \ \ (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

5. Draw appropriate Venn diagram for each of the following :

(i): $(A \cup B)^{\prime}$,

(ii): $A^{\prime} \cap B^{\prime}$,

(iii): $(A \cap B)^{\prime}$,

(iv): $A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

(ii): $A^{\prime} \cap B^{\prime}$

(iii): $(A \cap B)^{\prime}$

(iv): $A^{\prime} \cup B^{\prime}$

6. Let $U$ be the set of all triangles in a plane. If $A$ is the set of all triangles with at least one angle different from $60^{\circ}$, what is $A^{\prime}$ ?

Show Answer

Answer :

$\mathrm{U}=$ Set of all triangles in a plane

$A=$ Set of all triangles with at-least one angle different from $60^{\circ}$

$\mathrm{A}^{\prime}=$ Set of all triangles with no angle different from $60^{\circ}$ $=$ Set of all triangles with all three angles $60^{\circ}$

(As, in an equilateral triangle, all angles are $60^{\circ}$ ) $=$ Set of all equilateral triangles

7. Fill in the blanks to make each of the following a true statement :

(i): $A \cup A^{\prime}=\ldots$

(ii): $\phi^{\prime} \cap A=\ldots$

(iii): $A \cap A^{\prime}=$

(iv): $U^{\prime} \cap A=\ldots$

Show Answer

Answer :

(i): $A \cup A^{\prime}=U$

(ii): $\Phi^{\prime } \cap A=U \cap A=A$

$\therefore \ \ \Phi^{\prime }\cap A=A$

(iii): $A \cap A^\prime=\Phi$

(iv): $ U^\prime \cap A=\Phi$

$\therefore \ \ U^\prime \cap A=\Phi$



ਵਿਸ਼ਾ - ਸੂਚੀ