Chapter 1 Sets EXERCISE 1.4
EXERCISE 1.4
1. Find the union of each of the following pairs of sets :
(i): $X={1,3,5} \quad Y={1,2,3}$
(ii): $A={a, e, i, o, u} \quad B={a, b, c}$
(iii): $A={x: x$ is a natural number and multiple of $3 }$
$B={x: x$ is a natural number less than $6 }$
(iv): $A={x: x$ is a natural number and $1<x \leq 6}$
$B={x: x$ is a natural number and $6<x<10}$
(v): $A={1,2,3}, B=\phi$
Show Answer
Answer :
(i): $X={1,3,5} \quad Y={1,2,3}$
$X \cup Y={1,2,3,5}$
(ii): $A={a, e, i, o, u} \quad B={a, b, c}$
$\quad A \cup B={a, b, c, e, i, o, u}$
(iii): $ A={x: x}$ is a natural number and multiple of $3={3,6,9 \ldots }$
$ \qquad B = {x: x$ is a natural number less than $6 }={1,2,3,4,5,6}$
$A \cup B={1,2,4,5,3,6,9,12 \ldots}$
$\therefore \ \ A \cup B={x: x=1,2,4,5}$ or a multiple of $3$
(iv): $A={x: x$ is a natural number and $1<x \leq 6}={2,3,4,5,6}$
$B={x: x$ is a natural number and $6<x<10}={7,8,9}$
$A \cup B={2,3,4,5,6,7,8,9}$
$\therefore \ \ A \cup B={x: x \in N$ and $1<x<10}$
(v): $A={1,2,3}, B=\Phi$
$A \cup B={1,2,3}$
2. Let $A={a, b}, B={a, b, c}$. Is $A \subset B$ ? What is $A \cup B$ ?
Show Answer
Answer:
Here, $A={a, b}$ and $B={a, b, c}$
Yes, $A \subset B$
$A \cup B={a, b, c}=B$
3. If $A$ and $B$ are two sets such that $A \subset B$, then what is $A \cup B$ ?
Show Answer
Answer :
If $A$ and $B$ are two sets such that $A \subset B$, then $A \cup B=B$.
4. If $A={1,2,3,4}, B={3,4,5,6}, C={5,6,7,8}$ and $D={7,8,9,10}$; find
(i): $A \cup B$
(ii): $A \cup C$
(iii): $B \cup C$
(iv): $B \cup D$
(v): $A \cup B \cup C$
(vi): $A \cup B \cup D$
(vii): $B \cup C \cup D$
Show Answer
Answer :
$A={1,2,3,4}, B={3,4,5,6}, C={5,6,7,8}$ and $D={7,8,9,10}$
(i): $A \cup B={1,2,3,4,5,6}$
(ii): $A \cup C={1,2,3,4,5,6,7,8}$
(iii): $B \cup C={3,4,5,6,7,8}$
(iv): $B \cup D={3,4,5,6,7,8,9,10}$
(v): $A \cup B \cup C={1,2,3,4,5,6,7,8}$
(vi): $A \cup B \cup D={1,2,3,4,5,6,7,8,9,10}$
(vii): $B \cup C \cup D ={3,4,5,6,7,8,9,10}$
5. Find the intersection of each pair of sets of question $1$ above.
Show Answer
Answer :
(i): $X={1,3,5}, Y={1,2,3}$
$\quad X \cap Y={1,3}$
(ii): $A={a, e, i, o, u}, B={a, b, c}$
$\quad \ A \cap B={a}$
(iii): $ A= {x : x \text { is a natural number and multiple of 3} } ={3,6,9 }$
$\quad \ B={x : x \text{ is a natural number less than} \ 6 } ={1,2,3,4,5}$
$\therefore \ \ A \cap B={3}$
(iv): $ \ A={x$ $: x$ is a natural number and $1<x < 6 }={2,3,4,5,6}$
$\quad \ \ B={x$ $ : x $ is a natural number and $6<x<10}={7,8,9}$
$\therefore \ A \cap B=\Phi$
(v): $ \ A={1,2,3}, B=\Phi$
$\quad \ \ A \cap B=\Phi$
6. If $A={3,5,7,9,11}, B={7,9,11,13}, C={11,13,15}$ and $D={15,17}$; find
(i): $A \cap B$
(ii): $B \cap C$
(iii): $A \cap C \cap D$
(iv): $A \cap C$
(v): $B \cap D$
(vi): $A \cap(B \cup C)$
(vii): $A \cap D$
(viii): $A \cap(B \cup D)$
(ix): $(A \cap B) \cap(B \cup C)$
(x): $(A \cup D) \cap(B \cup C)$
Show Answer
Answer :
$ A={3,5,7,9,11}, B={7,9,11,13}, C={11,13,15} \text { and } D={15,17} $
(i): $ \ \mathrm{A} \cap \mathrm{B}={7,9,11}$
(ii): $ \ \mathrm{B} \cap \mathrm{C}={11,13}$
(iii): $ \ \mathrm{A} \cap \mathrm{C} \cap \mathrm{D}=(\mathrm{A} \cap \mathrm{C}) \cap \mathrm{D}={11} \cap{15,17}=\phi$
(iv): $ \ \mathrm{A} \cap \mathrm{C}={11}$
(v): $ \ \mathrm{B} \cap \mathrm{D}=\phi$
(vi): $ \ A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ $ ={7,9,11} \cup{11}={7,9,11} $
(vii): $ \ \mathrm{A} \cap \mathrm{D}=\phi$
(viii): $ \ A \cap(B \cup D)=(A \cap B) \cup(A \cap D) ={7,9,11} \cup \phi={7,9,11} $
(ix): $ \ (A \cap B) \cap(B \cup C)={7,9,11} \cap{7,9,11,13,15}={7,9,11} $
(x): $ \ (A \cup D) \cap(B \cup C)={3,5,7,9,11,15,17} \cap{7,9,11,13,15} ={7,9,11,15}$
7. If $A={x: x$ is a natural number $}, \ B={x: x$ is an even natural number $}$, $ \ C={x: x$ is an odd natural number $}$ and $D={x: x$ is a prime number $}$, find
(i): $A \cap B$
(ii): $A \cap C$
(iii): $A \cap D$
(iv): $B \cap C$
(v): $B \cap D$
(vi): $C \cap D$
Show Answer
Answer :
$ A={x: x \text { xis a natural number }}={1,2,3,4,5 \ldots \ldots} $
$ B={x: x \text { is an even natural number }}={2,4,6,8 \ldots \ldots} $
$ C={x: x \text { is an odd natural number }}={1,3,5,7,9 \ldots \ldots} $
$ D={x: x \text { xis a prime number }}={2,3,5,7 \ldots}$
(i): $\mathrm{A} \cap \mathrm{B}={\mathrm{x}: \mathrm{x}$ is a even natural number $}=\mathrm{B}$
(ii): $\mathrm{A} \cap \mathrm{C}={\mathrm{x}: \mathrm{x}$ is an odd natural number $}=\mathrm{C}$
(iii): $\mathrm{A} \cap \mathrm{D}={\mathrm{x}: \mathrm{x}$ is a prime number $}=\mathrm{D}$
(iv): $\mathrm{B} \cap \mathrm{C}=\phi$
(v): $\mathrm{B} \cap \mathrm{D}={2}$
(vi): $\mathrm{C} \cap \mathrm{D}={\mathrm{x}: x $ is odd prime number $}$
8. Which of the following pairs of sets are disjoint
(i): ${1,2,3,4}$ and ${x: x$ is a natural number and $4 \leq x \leq 6}$
(ii): ${a, e, i, o, u}$ and ${c, d, e, f}$
(iii): ${x: x$ is an even integer $}$ and ${x: x$ is an odd integer $}$
Show Answer
Answer :
(i): ${1,2,3,4}$
${x: x$ is a natural number and $4 \leq x \leq 6 }={4,5,6}$
Now, ${1,2,3,4} \cap{4,5,6}={4}$
Therefore, this pair of sets is not disjoint.
(ii): ${a, e, i, o, u} \cap{c, d, e, f}={e}$
Therefore, ${a, e, i, o, u}$ and ${c, d, e, f}$ are not disjoint.
(iii): ${x: x$ is an even integer $} \cap{x: x$ is an odd integer $}=$ $\Phi$
Therefore, this pair of sets is disjoint.
9. If $A={3,6,9,12,15,18,21}, \ B={4,8,12,16,20}, \ $ $C={2,4,6,8,10,12,14,16}, \ D={5,10,15,20}$; find
(i): $A-B$
(ii): $A-C$
(iii): $A-D$
(iv): $B-A$
(v): $C-A$
(vi): $D-A$
(vii): $B-C$
(viii): $B-D$
(ix): $C-B$
(x): $D-B$
(xi): $C-D$
(xii): $D-C$
Show Answer
Answer :
(i): $A-B={3,6,9,15,18,21}$
(ii): $A-C={3,9,15,18,21}$
(iii): $A-D={3,6,9,12,18,21}$
(iv): $B-A={4,8,16,20}$
(v): $C-A={2,4,8,10,14,16}$
(vi): $D-A={5,10,20}$
(vii): $B-C={20}$
(viii): $B - D ={4,8,12,16}$
(ix): $C-B={2,6,10,14}$
(x): $D-B={5,10,15}$
(xi): $C- D ={2,4,6,8,12,14,16}$
(xii): $D-C={5,15,20}$
10. If $X={a, b, c, d}$ and $Y={f, b, d, g}$, find
(i): $X-Y$
(ii): $Y-X$
(iii): $X \cap Y$
Show Answer
Answer :
(i): $X-Y={a, c}$
(ii): $Y-X={f, g}$
(iii): $X \cap Y=$ ${b, d}$
11. If $\mathbf{R}$ is the set of real numbers and $\mathbf{Q}$ is the set of rational numbers, then what is $\mathbf{R}-\mathbf{Q}$ ?
Show Answer
Answer :
$R$ : set of real numbers
Q: set of rational numbers
Therefore, $R-Q$ is a set of irrational numbers.
12. State whether each of the following statement is true or false. Justify your answer.
(i): ${2,3,4,5}$ and ${3,6}$ are disjoint sets.
(ii): ${a, e, i, o, u}$ and ${a, b, c, d}$ are disjoint sets.
(iii): ${2,6,10,14}$ and ${3,7,11,15}$ are disjoint sets.
(iv): ${2,6,10}$ and ${3,7,11}$ are disjoint sets.
Show Answer
Answer :
(i): False
As $3 \in{2,3,4,5}, 3 \in{3,6}$
$\Rightarrow{2,3,4,5} \cap{3,6}={3}$
(ii): False
As $a \in{a, e, i, o, u}, a \in{a, b, c, d}$
$\Rightarrow{a, e, i, o, u} \cap{a, b, c, d}={a}$
(iii): True
As ${2,6,10,14} \cap{3,7,11,15}=\Phi$
(iv): True
As ${2,6,10} \cap{3,7,11}=\Phi$